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1. TINTRODUCTION

A numerical solution to the problem of electromagnetic coupling
to a perfectly conducting body of revolution with an interior region
filled with a loss-free homogeneous material is developed here. Similar,
but nevertheless different, problems have have already been solved. For
example, numerical solutions for homogeneous material bodies of revolu-
tion appear in [1] and [2]. The problem of the lossy dielectric body of
revolution is addressed in [3]. Multilayered bodies are considered in
[4] and [5]. The problem of electromagnetic penetration through a sleeve-
fit seam in an otherwise perfectly conducting surface of revolution is
treated in [6]. Although the seam in [6] may exhibit a dielectric con-
trast, the bulk of the material inside the surface is the same as the
material outside. The concept of equivalent currents [7, Sec. 3-5] is
used in [1]1-[5]. An equivalent aperture excitation technique [8] and an
aperture loading technique are used in [6]. Inspiration for the aperture

loading technique was drawn from [9].

Coupling to a perfectly conducting body of revolution with a homo-
gencous interior region is considered in [10], but no numerical solution
is pursued there. 1In the present report, the boundary formulation con-
sisting of [10, Eqs. (15)-(18)] is solved numerically by means of the
method of moments [11]. This formulation is only one of several boundary
formulations supggested in [10, Section 2]. More boundary formulations
are outlined in [10, Sections, 3, 4, and 5). Those in [10, Sections 4
and 5] take advantage of the technique of subtracting out the short-
circuit fields. This technique captures the essence of the equivalent
aperture excitation technique. The present report is exclusively de-
voted to the numerical solution of the particular boundary formulation

consisting of [10, Eqs. (15)-(18)].

ILl. FORMUIATION OF TIl. PROBLEM

The problem is that of electromagnetic coupling to the perfectly
conducting body of revolution with homogeneous interior region shown in
Fig. 1. Figure 1 shows a cross section of the configuration in a plane

containing the axis (z axis) of the conducting body of revolution. This
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Fig. 1.

Original problem.




conducting body is crosshatched. Homogeneous material with permeability

u+ and permittivity £+ fills the exterior region V+ bounded by the surface
S+ and the aperture A. What is called S+ is not a single surface, but two
surfaces, one below A and one above A. The interior region V_ bounded by

the surface S and the aperture A is filled with homogeneous material
characterized by u_ and € . All three surfaces S+, S_, and A are surfaces
of revolution. The electromagnetic excitation consists of impressed electric
and magnetic current sources ii+ and ﬂi+ in vt and sources ii- and ﬁi- in V.
The resulting electric and magnetic fields in V+ are called Ef and ﬂ+. The
fields in V are called E and H . The fields Eé and ﬂf are unknown.
Obviously, solution for them constitutes a complete solution to the problem
presented in Fig. 1. However, our solution will be for equivalent surface
currents on S* and A rather than for the fields E} and ﬁf. It is possible

to construct gi and E} from these equivalent surface currents, but this is

not done in the present report.

The equivalence principle [7, Sec. 3-5] is used to obtain the situ-
ations shown in Figs. 2 and 3. In Fig. 2, (gi+, §i+) and equivalent cur-
rents gf, J, and M radiate in the presence of the homogeneous medium
(u+, e+) to produce (§+, Ef) in V+ and zero field elsewhere. Here, gf is
an electric current on S+, J is an electric current on A, and M is a mag-
netic current on A. TIn Fig. 3, (£i~, ﬂi-) and equivalent currents I, -J,
and -M radiate in the presence of the homogeneous medium (u, €) to pro-
duce (E , ﬂf) in V. and zero field elsewhere. Here, -J~ is an electric cur-
rent on S_, ~-J 1s an electric current on A, and -M is a magnetic current
on A. Since the surfaces S+ and S are perfectly conducting in the original
problem of Fig. 1, only equivalent electric currents are needed on them in
Figs. 2 and 3. The choice of -J rather than J on § in Fig. 3 is due to
personal preference. However, the minus sign relationship between the
aperture currents in Figs. 2 and 3 is mandated by the zero field stipula-
tions in Figs. 2 and 3 and continuity of the tangential components of the
electric and magnetic fields across the aperture in Fig. 1. If the zero
field stipulations in Figs. 2 and 3 are enforced, then the minus sign
relationship between the aperture currents in Figs. 2 and 3 ensures con-
tinuity of tangential fields across the aperture in Fig. 1. However,

if these zero fileld stipulations are not enforced, then the minus sign
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relationship between the aperture currents does not ensure continuity

of the tangential fields across the aperture in Fig. 1.

The equivalence principle states that the equivalent currents in
Figs. 2 and 3 are unique, but does not tell how to determine them. The
expressions in [7, Sec. 3-5] for the equivalent currents in terms of the
tangential components of the fields can not be used because the fields
are not known either. We determine the equivalent currents by enforcing
the boundary conditions for the fields in Fig. 1. These boundary con-

ditions are:

1) The tangential components of the electric field vanish

+
on the conducting surface S'.

2) The tangential components of the electric field vanish on

the conducting surface s,

3) The tangential components of the electric field are con-

tinuous across the aperture A.

4) The tangential components of the magnetic field are con-

tinuous across the aperture A.

The equations for these four boundary conditions are

1+ +
5 Etan =0 on S (1a)
n
Lg <o on s~ (1b)
+ —tan
n
1+ _ 1 -
+ Etan T+ Etan on A (1c)
n n
+ -
Lltan - Etan on A (1d)

The subscript 'tan" denotes tangential components on the surface in ques-

tion. The factor

(2)

1 .
+
n Vi

was included in (1) to make (la), (1b), and (lc¢) compatible with (1d).
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In view of Figs. 2 and 3, (1) can be rewritten as

i+ +

1+ o+ o1
- FE & HL.M=—TE on S (3a)
n n
R J L gl- -
- gta (J +I, M) = + Eran on S (3b)
n n
1+ o+ 1 - o1 i+ 1 i-
G - SR G - SR - SEL e (0
n . n n n
+ 4+ - - _ i+ i~
Bian@ ¥ 0 -H G +L, M =8, ~Hap on A (3d)
+
where E;an(i’ M) denotes the tangential components of the electric field

due to the electric current J and the magnetic current M, both radiating
) + + +

in the medium characterized by (u", €7). Similarly, H  (J, M) denotes
it

the tangential components of the corresponding magnetic field. E and
1+—tanii

Eiin are the tangential electric and magnetic fields due to+(i T, M)
radiating in the medium characterized by (™, €). Since J and J are
disjoint, the + sign between them in the expression (gf +J) means union
rather than simple addition. Similarly, (J° +J) denotes the union of J_
with J. It does not matter whether the tangential electric fields on the
left-hand sides of (3a) and (3b) are evaluated just inside s or just
outside Si because they are continucus across St. The Ampere's law con-
tributions cancel out of the left-hand sides of (3c) and (3d). By Ampere's
law contribution we mean the contribution to the field due to the value of
the current at the field point. The qualification "on A" in (3c) and (34)
means not only evaluation on A but also suppression of all Ampere's law
contributions. The set of equations (3) is essentially the same as {10,
Eqs. (15)-(18)]. It is shown in [10] that these equations suffice to

+
uniquely determine the equivalent currents J , J, and M.

The four field operators which give the electric and magnetic fields

due to electric and magnetic currents appear in (3). However, it is evident
from [7, Eq. 3-79)] that

+ R, S
Etan(O, M n Etan(n+ M, 0) (4)
. r|+ + 1
ﬂ;an(o. M) = L 2 E;_m . 8 0) (5)
(n™)




where

n = [ (6)

The seemingly superfluous pair of factors n+ and 1/n+ on the right-hand
sides of (4) and (5) were included in order to liken the first arguments
+ ¥
of E and H_ to electric currents. In view of linearity of the field
~tan ~tan

operators, substitution of (4) and (5) into (3) gives

1 + + + 1 o1 i+ +
T+ Etan(g' +:]-’O) + Etan ( + M, 0 = + E-tan on S (7a)
n n n
Lo " - Loy - oL gi- -
- FE G0 +H MO =~ E - onS (7b)
n n n
1ot 1 o + 1 - (L
- ¥ Ean@ L0 - L E 410+ H (M0 HH (- M,0)
n n n n
-1 pit 1 i~
- n+ Etan - r]+ Etan on A (7e)
+ ot - - 1 o+ 1 oo~
- ﬂtan(‘1 +5,0) - ﬂtan(£-+£’0) T+ Etan (—I-ﬂ’o) T -2 Etan (_: M,0)
n n M) n
_ it i
- E-tan ﬂtan on A (7d)

Unlike the left-~hand sides of (3) which contain all four field operators,
the left-hand sides of (7) contain only the operators which give the electric
and magnetic tields due to electric currents. Equations (7) are solved bv

means of the method of moments in section III.

III. METHOD OF MOMENTS SOLUTION

The method of moments solution to (7) is obtained byv first express-
ing the unknown currents (£f+£), (gf+i), and M as linear combinations of
known expansion functions, then taking the symmetric product of (7) with
each member of a set of testing functions, and finally solving the resulting

set of simultaneous equations.
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Momentarily ignoring the fact that (£f+£) and (£f+i) are supposed

to be equal on A, we write

+
N -2 N -1
£++:1 =) it gt: + ) 12; g‘f’ on (s*+a) (8)
nl3=t MM o J
N -2 N -2
- t- t- ¢— ¢- -
JH =31y 1.3+ )y vl on (S +A) (9)
o lje1 MM 5 ad

+ +
where (S +A) is the surface which is the union of S and A. Similarly,
- - + -
(S +A) is the union of § and A. Since S , S , and A are surfaces of

+ -
revolution, (S +A) and (S +A) are also surfaces of revolution. 1In (8)
+

+ +
and (9), It. and Iw, are unknown coefficients. The vectors JtT and
nj nj nj

+ .
gﬁj in (8) and (9) are expansion functions defined by
sk 1,2 NE-2
. T: (t—) jn¢ J = yéy e -
gnj = gtt<~L—-7—~ e (10a)
P n=0, ‘l, *2,.
+ -
oo j=1,2,... (N -1 or N -2)
;e P ne
Jnj = g¢ pt e (10b)
j n=20, %1, *2,...

The right-hand sides of (10) were obtained by attaching the superscript *
to various quantities in the version of [12, Egs. (2) and (3)] with P
replaced by N. The notation * in (10) denotes quantities defined on
(S:+A). The subscript j which runs from 1 to either Nt-Z, N+—l, or

N -2 in (10) 1is not to be confused with the j which appears in the argu-
ment of the exponential in (10). The latter j is v-1.

The quantities decorated with the notation * on the right-hand
side of (10) depend on the generating curve of the surface (St+A). The
generating curve of a surface of revolution is the plane curve, which when
rotated about the z axis, generates the surface of revolution. For com-
putations, the generating curve of (S:+A) is approximated by choosing a
succession of points E;, j=1,2....Nf, on the generating curve of (§t+A)
and then connccting them with straight line segments. The point tj is
-+
called a data point. 1Its location is specified by its distance p, from

i

-
the z axis and its z coordinate z;. Hence, we write




+

-+ s
Location of tj = (pj, zj)’ i =1,2,...N (11)

-+
The generating curve of ($ +A) starts at t goes to t_., then to t

’ >
and so forth until the last data point tw+1ls reached ? A typical zrrange-
ment of data points on the generating curve of (S +A) is shown in Fig. 4.
Figure 5 shows an arrangement of data points on the generating curve of
(S+A). The first and last data points on the generating curve of (S++A)
are on the z axis. The last two data points on the generating curve of
(S-+A) overlap with the first two. All data points on A are common to

the generating curves of both (S++A) and (S +A). There are M data points
on A. The first data point on A is the point where A meets the lower

part of S+. This data point 1is the (Mi+l)th data point on the generating
curve of (St+A). The last data point on A is the point where A meets the

upper part of S+.

In (10), ¢ is the angular distance from the positive x axis.
¢ is measured in the xy plane and toward the positive y axis. In (10b),
g¢ is the unit vector in the ¢ direction. No * needs to be attached to

+
$ and because they do not depend on the generating curve of (S™+A).

Ys
Henceforth, the expression ''generating curve of (St+A)" will
mean the series of straight line segments connecting the data points
t,, j=1, 2,.. Nt. In (10), tt is the arc length along the generating
curve of (S~ +A) and u, is the unit vect?r in the tt direction. We
choose t" to be zero at the data point tJ

1
4 -t
(S™+A) starts. Previously, only the location of t} was specified. The

where the generating curve of

-+ + -
value of t, is now defined to be the value of t~ at the location of t].

In (10a), T§ (tt) is the triangle functign which gtarts at tlL = E§,—‘j
reaches the maximum height of unity at t = j+1’ and ends at+t j+ti+2'
In (10b), Pj(t ) ff the unit pulse function which starts at t™ = tj

and ends at t~ = tj+1' Naturally, the functions Tj and Pj are real. They
are essentially the same as the functions Tj and Pj shown in [12, Figs. 1

- -
and 2]. The tj used in [12] corresponds to t, of the present report. The

A

notation of the present report was obtained by replacing the superscript -

on t, in [12] by a horizontal bar directly above t, and then appending

] h|

¢ +
the superscript +. In (10a), p 1is the distance from the z axis at t .
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Fig. 4. Arrangement of data points on the generating curve of the
surface (St + A).

M M

|
: N -2 - M +2
i
|

Fig. 5. Arrangement of data points on the generating curve of
the surface (S~ + A).
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+ + +
In (10b), Oj is the value of p~ at the center of the pulse function Pi.

Because of the nature of the approximate generating curve of (Sf+A),

+ 1 ,-¢ -+

oj =5 (oJ. + oj+1) (12)

+

-t —_
where, as previously defined, pj is the distance of the data point tJ
+ + =t
from the z axis., With the advent of t~ and p~, 03 becomes the value
4 + -+
of p at t~ = ti.

As is evident from the range of values of j in (10a), a peak of
a triangle function is placed at each data point on the generating curve

+ —+
of (S +A) except the first data point t

. —+
1 and the last data point tN+.

As shown in Fig. 4, the data points E; and E++ lie on the z axis. No
i —+ N

peak of a triangle function is needed at t, because the function

+ o+, + —+ 14 + —+

Tl(t Y/¢ in (10a), being equal to 1/02 for t <t j_tz, is just as
=+ . -+ A . .

large at tl as it is at tz. Similarly, no peak of a triangle function

-t

is neceded at t | because the function T+ (t+)/p+ in (10a) holds its
—+ NT o+ 4 N+-2 +

value 1/p at t =t . all the way out to t =t .
g N -1 Nt

It was necessary to overlap the last two data points with the
first two in Fig. 5 in order to induce a computational procedure which
places no peak of a triangle function at the first and last data points
to obtain a peak of a triangle function at every data point on the
generating curve of (S"+A). The above mentioned computational procedure
was originally designed for a generating curve such as that of (S++A)
whose first and last data points are on the z axis where no peaks of
triangle functions are wanted. The second summation with respect to j
in (9) is terminated at j = N -2 rather than at j= N -1 because,” due to

he
the overlapping data points in Fig. 5, the vector function g; N--1 de-
JN--

1

Because each triangle function in (10a) is continuous in t~,

- A
fined by setting j = N -1 in (10b) is a duplicate of i;

the tf components of (8) and (9) are also continuous in t‘. As a result,
(8) and (9) do not give rise to anyv circular loops of filamentary electric
charge. Any circular loop of such charge is not physically realizable
because an infinite amount of energy is required to assemble it. Since

each pulse function in (10b) begins and ends abruptly, discontinuities

- N A ee B
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in the ¢ components of (8) and (9) are allowed at all the data points.
Unlike discontinuities in the tt component of electric current, dis-
continuities in the ¢ component of electric current are not accompanied
by concentrations of electric change.

+ -
Since the data points of the generating curves of (S +A) and (S +A)

+
coincide with each other on A, the vector functions Jt and J¢)+
—nj —nj
(8) are the same as those on A in (9). Hence, (8) and (9) can be made

on A in

equal on A by equating the coefficients of these vector functions. We

write
+ + + +
[_M -1 M N -2 N -1
+
M DN DR ) I:;-Jq)-; + I, It;gij + 1, 12}1‘1’*
njj=r MM g2 MR gt P j=M 4y PIT
M M-1
t+ o+
*+1 [Z nj-n, j+Mt-1 Z In,j+M—n,j+M" (13)
n |j=1 =1
L
M -1 M N -2 N -2
JHI =717 IET—J;E + 7 Iifgi. + ) t'.'g;j- 1 ‘bfgif
n |j=1 J j= ™ j=M +M nJ j=M M nimmJ
R S
L D SV A I J - (14)
n ly=1 nj—n,jM -1 521 n,j+M -, j+M
with
t+ _ t-
inM* = gnM_ on A (15a)
t+ t- _
AT L I T PR o (15b)
t+
J 1 = 1t~ on A (15¢)
B e N
(as = g% - -
gn,j+M+ gn’j+M_ s 3 1,2,...M-1 (154)

The coefficients that were equated in (8) and (9) have been relabeled

Inj and In,j+M in (13) and (14). The first ; in (13) is a vector func-

+ t+ t+
tion confined to S . The vector functions gnM+ and gn,M+M+-1 in (13)

+ t+ t+
straddle S and A. Except for the overflow of gnM+ and gn,M+M+-1 onto




13

+
S, the second z in (13) is a vector function confined to A. The first Z

n n
- t.—

in (14) is confined to S . The vector functions J M- and J MEM—1 in (14)

straddle S and A. Except for the overflow of J “_ and J ,M#M~-1 onto g™ ,

the second Z in (14) is confined to A. The right-hand sides of (13) and
(14) are eqsal on A because (15) implies that the portion on A of the

second Z in (13) is equal to the portion on A of the second Z in -(14).
n n

To condense the notation in (13) and (14), we define expansion

1% 2+
functions J . and J by
-nj -nj
gt L §o=1,2,...M-1
nj
o+ j = M5, M#l M -1
J ,J"M +l £y ] = ’ g oo -
(16)
£ = oM, oM+, .. N M=
| Tn gty , seo NTH
+
Z\ . . et 2N -2M-2
In,j-nt+omer? 3 T N A ML -

or 2M -2M-3
t* .
J+M -1 ’ ] 1,2,...M
a7
ﬁMhM s 3 = ML, M#2,...2M-1
’
. 4
y ] .o
+ + +
_M+1 s ] M, M+1, ...2M -1
(18)

: + + + o+
2M7, 2M 41,...N"+M -M-2

and coefficients I

"
—
-
~N
-
=
t
|
—

L, j-M-+M > ]

+
. 2N -2M-2
N -M-1,... _
or 2N -2M-3

[
[}

J-NE2M41°

The new vector functions (16) and (17) and the new coefficients (18) re-
duce (13) and (14) to
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2N -2M-2 2M-1
+
J 4] = ) ‘1:._111: + 7 :112‘+ (19)
a j=1 ™) j=1 nj—mj}
2N -2M-3 2M-1
J7+I = ) Iigi + V1% (20)
n j=1 Jj™™j j=1 nj—nj
The first Z in (19) is on S+. The functions J2+ and J2+ in (19)
j Tl -n,2M-1
+
straddle S and A. Except for the overflow of J2+ and J2+ onto
+ -l -, 2M-1
S, the second z in (19) is confined to A. The first z in (20) is
h| h]
- , - 2- . -
on S . The functions gnl and Jn,ZM—l in (20) straddle S and A. Except
for the overflow of J2- and J°~ onto S~, the second ) in (20) is con-
“nl ~n,2M-1

fined to A. The right-hand sides of (19) and (20) are equal to each other

on A.

The equivalent magnetic current M in (7) is expanded as

2M-3
M=n"7 7 anii; (21)
n j=1
where an is an unknown coefficient and gi; is an expansion function
given by
t+ ;o _
" in,j+M+ . j=1,2,...M-2
-]
g0t
T, jMt-M+2 = M-1, M,...2M-3

+
The t component of (21) is continuous so that no circular loops of fila-
mentary magnetic charge appear in the aperture in Figs. 2 and 3. The ¢

component of (21) can have a discontinuity at each data point in the aper-

ture.

Now that the expansions (19)-(21) have been written for the equi-
valent currents, the next step in the method of moments is to take the
symmetric product of (7) with each member of a set of testing functionms.
The symmetric product of two vectors W and E is called <W,E> and is
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defined to be the integral of the dot product of W with E over S+, s,
and A. First, (7a) is tested with the vector function Hi: defined by

1+ _ 1+ % _ +
LA C BPD B i=1,2,...2N -2M4-2 (23)

where the asterisk denotes complex conjugate. Then, (7b) is tested

'i i ’ <y

For the sake of argument, we write

1+ .+ + 1 _1 i+ +
T+ E-:‘t:an(-”l +L,0) + ﬂtan( + M,0) + Etan on (5+A) (25)
n n n
1 - - - 1 _ 1 _i- -
- 7 Etan(l +J,0) + Etan( n M,0) = : Etan on (S +A) (26)
n n n
2+ 2-
Testing functions W and W are defined by
i —ni
2+, 240 % _ _
LA CHPY , 1=1,2,...24-1 (27)
Eni = (gni) , i 1,2,...2M-1 (28)
For a particular value of i, (25) is tested with Ei:, (26) is tested

with Hi;, and the results are added to obtain one equation. Letting i
run from 1 to 2M-1, we obtain 2M-1 equations. This kind of testing is

equivalent to

1) Testing (7a) with the part of HEI on S ,

testing (7b) with the part of Enl on S ,

2+
testing (7c¢) with the part of Enl

and adding the results to obtain one equation.

Hﬁ: for 1 = 2,3,...M-1

on A,

2) Testing (7c¢) with
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+
on S ,
on

=

it

. 2

W
testing (7b) with the part of S,
. \ 2
testing (7¢) with the part of W

and adding the results to obtain one more equation.

3) Testing (7a) with the part of w2+

+

on A,

+
4) Testing (7c) with Eii for i = M+1, M+2,...2M-1.
Statement 1) is justified in the following manner. Testing (25) with
+ +
the part of Eﬁl on S 1is equivalent to testing (7a) with the part of

+
W2+ on S because (71) and (25) are identical on S+. Likewise, testing

—nl

1
on S . It is evident from (27), (28), (17), and (15) that

(26) with the part of Eﬂ on S is equivalent to testing (7b) with the

part of Enl
+ -

W wT ona, i-=1,2,...2M-1 (29a)
|1l -nil

+
Hence, testing (25) with the part of Eﬁl

on A, and adding the results is equivalent to testing

1
the sum of (25) and (26) with the part of Eﬁi on A. Because the sum

of (25) and (26) on A is precisely (7c), this amounts to testing (7c¢)

+
with the part of Eﬁl on A. Consequently, statement 1) is true.

on A, testing (26) with the

part of w?
Ll

Since all the testing functions in statements 2) and 4) are

confined to A, (29a) implies that

2+ 2-
Hp = M (290)

for all the values of i in statements 2) and 4). Hence, for these

2+ 2-
values of i, testing (25) with Eni’ testing (26) with Eni’ and adding

+
i
and (26) on A is (7c¢). Thus, statements 2) and 4) are true. Justifi-

the results amounts to testing (7c) with Eﬁ because the sum of (25)

cation for statement 3) is similar to that for statement 1) and is

left as an exercise for the interested reader.
Finally, (7d) is tested with

3+ I+, %
W= s 1=1,2,...243 (30)
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Substituting the expansions (19)-(21) into (7) and then test-
ing (7) with (23), (24), (27), (28), and (30) in the previously

described manner, we obtain the matrix equations
n=0, t1, 2, ... (31)

Here, in is a column wector of the unknown coefficients in (19)-(21). 1
Also, Tn is a square matrix called the moment matrix. Finally, gn is
a column vector calieg the excitation vector. The elements of gﬁ are

. i+ it ‘v
obtained by testing :..e known fields Etan and Etan on the right-hand
sides of (7).

The column ve: tor in is defined by

VR N
x =11 17 I ¥ (32)

where the tilde (~) denotes the transpose of a column vector and where

~1+ 1- = > . 1+ _1-
the jth elements of In . In , In, and Vn are, respectively, Inj’ Inj’
I ., and V ,.

nj nj
The moment matrix Tn is given by
le+ 0 Z12+ _Y13+
n n n
11- 12- 13-
0 nrzn nrzn -Yn
Tn = ' (33)
z21+ n ZZl- Z22+ n Z22- _Y23+ _ Y23-
n r’n n r’n n n
Y31+ Y31— Y32+ + Y32- Z33++(}—)Z33_
n n n n n n_'n
where _
n, o= (34)
n

The 1jth elements of t¢he superscripted Zn and Yn submatrices in (33)
are given by
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pPq* _ p? 1 . qt _
znij—— Wy nt E (J 5 0)> p=1,2,3 (35)
pqt _ _ . P? RPN .2 _
Ynij W H J 50 0)> q=1,2,3 (36)

The new vector functions J3T and w3f unavoidably introduced in
“nj -ni

(35) and (36) are defined by
J3— J3+

-nj —,1j

(37)
W = Wt
Ml Tl

+ +
" is needed on the field operators E* and H 1in (35)

No superscript ''tan
+
and (36) because the testing function Eﬁ; is tangential to the surface

+ + +
(S +A). Because wP: and JqT have the dimension of (1/distance) and
i —nj

1 ¢ b : .
because the operators oF E and H are dimensionless, expressions (35)
and (36) are dimensionless. Hence,the elements of the moment matrix Tn

are also dimensionless.

The excitation vector En in (31) is given by

. <i1+ ~{1- - -

Bo= (vitt il vtooth (38)
n n n n n

where the ith elements of Vi1+, Vil_ , V;, and f: are given by

11+ 1+ 1 i+

Vni = <Wni e E” > (39a)

n
11- 1~ 1 _i-
vni = - <wni » ¥ E > (39b)
n

£ _ 2+ 1 i+ 2- 1 _i-

Vn1 = <Wni R E > - <wni . n+ E” > (39¢)
i 3+ i+ 3+ i-

Ini <Wni s H > = <Wni, H > (39d)

The superscript i in (38) and (39) is not to be confused with the sub-

+
script 1 in (39). The former { indicates dependence on the fields Ei‘

o4
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i- . :
and H" . The latter i denotes the ith element of the column vector

‘s -
"in question. No superscript ''tan" is needed on El” and E}“ in (39)

because all the testing functions in (39) are tangential vectors.

In general, the method of moments gives one matrix equation in
which all the unknowns are coupled to each other. However, in the
matrix equations (31) there is no coupling between in and §m for m # n.
This lack of coupling is a consequence of the nature of the field

. jnd . -
operators in (7), the e’ e dependence of the expansion functions, the

-jng . .
e J dependence of the testing functions, and the fact that the
~imé Ing is zero whenever

integral from O to 27 of the product of e with e

m # n. The two field operators which give the tangential electric

and tangential magnetic fields due to an electric current appear in (7).

An e]nG nd

electric current produces an e electric field [13, Appendix B]

and an 3™ magnetic field [13, Eq. (9)). In the previous sentence, the

o ek
modifier el™® Ine

means that the ¢ dependence is described by e Actually,

[13, Eq. (9)] represents the operatar ~n X H rather than -H where H de-
notes the magnetic field due to an electric current and n is the unit
normal vector which points outward from the surface of the body of revo-
lution in [13, Fig. 1]. However, the effect of n in n x H is to discard
the normal component of H and to rotate the tangential component of H

through an angle of 90° so that if n x H is ean>

jn@_

, then the tangential

component of H is also e

Equation (7d) can be called a magnetic field equation because it
comes from the boundary condition that the tangential components of the
magnetic field are continuous across the aperture. Since (7d) is a
magnetic field equation, we were tempted to multiply it by nx in order
to make it conform to {13, Eq. (3)] and [14, Eq. (1)]. The nxis vital
to [14, Eq. (1)]. 1If the nx were removed from [l4, Eq. (1)], its method
of moments solution using the testing and expansion functions defined in
[14] would fail for any conducting body of revolution with a symmetric
generating curve. The conducting sphere in [14, Fig. 1] is an example
of a conducting body of revolution with a symmetric generating curve.

The above mentioned failure of the method of moments may be due to the
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fact that the magnetic field of an electric current is "cross polarized"
with respect to the electric current. For example, the magnetic field

of an electric current element is always perpendicular to that current
element [7, Eq. (2-113)].

Although the n« is vital to [14, Fq. (1)], we decided not to

multiply (7d) by n - because of the following two reasons.

1) The magnetic field in (7d) as it stands is not all cross
polarized. Only the magnctic field due to the electric
currents J +] is cross polarized. The magnetic field due to

the magnetic current M Is not cross polarized.

2) 1f (7d) were multiplied by n ., we would have to calculate
matrix eclements not only for the operators E‘({,O) and
il (J,0) but also for n ~ E (1,0) and n ~ H (J,0). If the
functions which multiply U and g¢ in (10) were the same,
then the matrices for n » E (J,0) and n ~ H (J,0) could be
obtained by merely reiarranging the elements of the matrices
for £ (J1,0) and N (J,0). Unfortunately, the function in
(10b) is different from that in (10a) so that multiplication of
(7d) by n- would indced require calculation of additional

matrix clements.

According to (32), the solution of (31) for in determines the

ruvffioien[sl;], lnj’ and Vni in (19)-(21). Thanks to (16), (17),

and (22), expressions (19)-(21) for the electric and magnetic currents

become
T4 + +  +
— 7 - 3 M~
e o A o Iyt + R 21” t+
o= o S / Y / Y
| ; + M+ + ~MT+M
N ni nij P4 nim, j-Mt+1 =2 nj ™, j-Mt
L
40
N one , oy M-1 ) (40)
+ ) byt o+ Vot — Voo gt -
v S s L A ‘ AR
R e e I RS




o - - M M-2
e MZ 1 - e 2»/4 1o \1 Z{ -2 ..
J+J J . - _ _ VY

ne—oo | §=1 nj—nj oM nj—n,j-M +1 -M nj-—n,j-M

(41)
N3 M o -1
+ ) g 0 ST AUV S B -
j=N_+M——M—l nj—n,j-N +2'4+1 21 nji—m,j+M~-1 jMHL nj- ‘n ]+
_I
| M-2 2M-3
+ t+ - O+
M=n ) | ) v.JI . 4+ ] v I (42)
= . . M+
n=—n | j=1 nj m, j+M* j=M-1 nj n, j+HMr-M+2

IV. ELIMINATION OF T FOR NEGATIVE VALUES OF n
I

At first glance, solution of (31) requires calculation of the
moment matrices T for both negative and non-negative values of n.
However, we will show that each element of T is either even or odd
in n. Consequently, by decomposing the exc1tat1on vector B into its
even and odd parts with respect to n, we will be able to express the
solutions to all of equations (31) in terms of the solutions to matrix
equations involving only the moment matrices Tn for the non-negative

values of n.

The equations and unknowns in (31) were ordered so that the moment
matrix could, as in (33), be expressed in terms of a minimum number of
submatrices. Unfortunately, the arrangement of equations and unknowns

in (31) is not suitable for comparing the elements of T_n with those

of T . Hence, we rearrange the equations and unknowns in (31) to obtain
,tt Zt¢> Y3tt Y3t:<1> ~I>3t ViBﬂ
n n n n n n
A A L
= (43)
Ytt Yt¢ Z3tt Z3t¢ §3t fi3t
n n n n n n
GOt yde L3t 300 | |30 3136
__n n n n - L n_J L. _J
In (43), Z;S, r being either t or ¢ and s being either t or ¢, is the

submatrix of all the elements of

e A 6w ey
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— ]
Z11+ 0 le+
n n
11- 12-
0 ann ann (44)
Z21+ n Z21— Z22+ +n Z22—
n rn n rn

for which the testing function is r type and the expansion function is

s type. Expression (44) was drawn from the right-hand side of (33). The
testing functions Ezi and expansion functions gﬁ? enter (44) by means

of (35). The s type expansion functions, s being either t or ¢, are

those on the right-hand sides of (16), (17) and (22) with the superscript s.
The r type testing functions, r being either t or ¢, are the complex con-
jugates of the r type expansion functions. Still in (43), YES, r being
either t or ¢ and s being either t or ¢, is the submatrix of all the ele-

ments

[Yil+ Yil— Yi2+ + YEZ-]

for which the testing function is r type and the expansion function is

s type. The submatrices ers and Yirs in (43) are similarly defined in

terms of the remaining submatrices

33

3-
(z_

+ 1 3
+ (ﬁ;) z ]

and

13+
n

13-
n
23+ 23-

-Y -Y
- n n

on the right-hand side of (33).

The column vector fﬁs in (43), s being either t or ¢, consists of

all the elements of

S+ -
(1, L (45)
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for which the superscript on the right-hand side of (18) is s and all
the cocfficients Inj which multiply the s type expansion fugg;ions

in (19). Expression (45) was drawn from (32). Similarly, Vn in (43)
is the column vector of all the coefficients of the s type expansion

functions in (21).

The column vector Vi3r on the right-hand side of (43), r being
either t or }, consists of all the elements of
~11+ ~il- ~1i

[Vn Vn Vn] (46)

for which the testing function is r type. Expression (46) was drawn
from (38). Finally, the column vector ?:3r in (43) consists of all the
elements of f; for which the testing function is r type. The super-
scripts t and ¢ in (43) denote the types of testing and expansion func-
tions. However, the superscript 3 in (43) has no special meaning. It

serves only to distinguish matrices with it from those without it.

What happens to the submatrices ZES and Zirs on the le‘t-hand
side of (43) when n is replaced by -n? Previously, the eleme:t: of Z:S
and Zirs were traced back to those of the elements (35) for which the
testing functions are r type and the expansion functions are s type.
Thanks to (16), (17), (22), (23), (24), (27), (28), (30), and (37), the

matrix element (35) canbe written as

+ p=1,2,3
2Pl = - WL T E WS, 00 47
J n q=1,2,3

+
where i:j' are the expansion functions appearing in (13) and (14) and

rt rx
_hi.' (inv) (.8)

The subscripts and superscripts on the left-hand side of (47) indicate

4
the testing function wP> and the expansion function J¥. 1t is under-
—ni -nj
stood from (35) that zPat indicates WPt and J9t and that zP97 indicates
nij i j nij

pP- q- - p*
W and lnj' In (47), r t if Eni

Wi is a t type expansion function,
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+
and r = ¢ if ES; is a ¢ type expansion function. Similarly, s in
+
(47) is determined by the type of the expansion function g:;.
According to (16), (17), and (22), the subscript j' in (47) is

+
also determined by ggj. Similarly, the subscript i' in (47) is

determined by Egi. Explicit expressions for i' and j' are not
needed now. If the testing functions and expansion functions in
{12, Eqs. (2)-(5)] are decorated by appending * to their super-
scripts and by changing their subscripts i and j to i' and j' and
if the normalized electric field operator —Es/n used in (12] is
replaced by —E*/nt, then the elements of the moment matrix used in

(12] will be coerced into becoming the right-hand side of (47).

The monent matrix used in [12] is given by [12, Eqs. (9)-(12)]
from which it is evident that the tt and ¢¢ submatrices are even in n
and that the ¢t and t¢ submatrices are odd in n. Hence, the super-

scripted Zn submatrices on the left-hand side of (43) satisfy

Ztt Zt@ Stt _Zt¢
-0 -n n n
= (49a)
z®t Z¢¢ _Z¢t Z¢¢
et -n n
Zztt ZEtrb Z3tt -Ziw
n n - n (49b)
4 4 ¢ o
LZ3J[ 23)¢ _Zart Z3§’¢
-Nn -n n n

What happens to the submatrices Y;S and Yirs on the left-hand

side of (43) when n is replaced by -n? Previously, the elements of Y;s

and ers were traced back to those of the elements (36) for which the

testing functions are r type and the expansion functions are s type.

P S re s'
Replacement of Eni and gnj in (36) by Eni' and gnj, gives
p=1,2,3
.PqQ- =—/'r‘ + s+ .
Y1 Wi B, 007 (50)

q=1,2,3
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The change in testing functions and expansion functions in going
from (36) to (50) is the same as the change that sent (35) into
(47).

1f the testing functions and expansion functions in [14]
are decorated by appending the superscript * and by changing their
subscripts i and j to i' and j' and if the magnetic field operator
Hs used in [14] is replaced by ﬂ‘, then the elements of the moment

+
matrix in [14] denoted by Y;i'j' become

r =t,o
:;:‘:J' = - <H;;v) E‘ * li*(;l_i.;vy 0)> s (51)
s = t,d
where
+
D= Uy U, (52)

t
According to (52), n 1is a unit vector normal to the generating curve
+
of (S +A). Althouch we have been omitting the vector designation from

vectors inside the symmetric product, we decided to designate g} and
+

H as vectors in (51) to clearly indicate that the vector product
+ +

n Y H 1is intended there. Striving toward (50), we rewrite (51) as

t,d
v 0, (53)
s = t,d

aj
1l

rst ¢ r b8t
= < N W J
ni'j' °n -ni'’ H ("nj

- . : . 1o : .
Modified testing functions Eni' are now defined by inter-

4

)
changing the t and ¢ components of Wo,,.

ni
N & -,

\J =

W (" Et‘(w X uﬁ) (54a)
N, =, (0, ) (54b)
it T SMhe T g *

r' st .
? J y raQ
Replacement of W i by W i in (53) gives




o e ——
e o . ——
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Arst + ~p+ . s’ j'r = t)¢
Yni'j' = <P_ 4 E‘ni’ ’ “ (l’“'l £ 0))! (55)
l? = t,D
The symbol ~ on the left-hand side of (55) indicates that the testing
~y +
function is W ., instead of W' ,,. 1In view of (52) and (54), (55)
-ni i
becomes

+ + »(bs‘

te + . s? o oo
- <wn1|' H ("Inj" 0)/ = Yni'j' (563)
s = t,b
(5 - _ ~ts*t
- <Wni,, H (ini" 0)- = Yni'j' (56b)

The left-hand sides of (56) are the r = t and r = ¢ portions of (50).
Hence, (56) states that the r = t matrix element in (50) is the negative
of the r = & matrix element modified from [14] and that the r = ¢ matrix
element in (50) is the r = t matrix element modified from [14]. The
expression "matrix element modified from [14]" denotes the matrix element
of [14] modified by replacing the testing function E;i by Q;i, of (54),
replacing the expansion function JS. by JSF,, and replacing the magnetic
field operator ﬂs by ﬂf Note tha;?Jsinc;nill Ampere's law contributions
were suppressed in (3c¢) and (3d), the operator ﬂf does not contain any

Ampere's law contribution.

It is evident from [14, Eq. (12)] that the tt and ¢¢ matrix
elements on the right-hand sides of (56) are even in n and that the ¢t
and t$ matrix elements on the right-hand sides of (56) are odd in n.
Consequently, the tt and 99 matrix elements in (50) are odd in n and the
¢t and td matrix elements in (50) are even in n. Hence, the submatrices

Y;S and ers on the left-hand side of (43) satisfy

L
- (57a)
$t bl ot _voo
LY—n Y—n_J Lyn Ya
- p r~
S I U
= (57b)
v It Y3¢¢ Y3¢t _Y3¢
| -n -n_| [ 'n n
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Next, the excitation vector on the right-hand side of (43) is

written as

— ha — - — -
Vi3t Gi3t0 Vi3t¢
n n n
§i3® 3i3¢e 3i3¢¢
‘I’i3t = 'fi3te + ‘I’i3t¢ y n =0, 1, +2,... (58)
n n n
fiB@ f13¢e ?i3¢¢
n _J n —J n
— —
where
38 i3t 3i3c.1
n n -n
313¢e Vi3¢ _ 313¢
n 1 n -n
== (59a)
sisen| 2 a3 sl
n n -n
+13¢0 +13¢ +1i3¢
l_I_n _ Lfn * I"n__‘
— - = -
i3t Vi3t _ §i3t
n n -n
Vi3¢¢ 313¢ + 613¢
n 1 n -n N
= = (59b)
fi3t¢ 2 T13t + fi3t
n n -n
¥13¢¢ f13¢ B f13¢
Lp ] L0 -n_|

The last superscript 0 or ¢ on the column vectors on the right-hand side

of (58) distinguishes those column vectors from each other and from the
excitation vector on the left-hand side of (58). For a particular value of
n, the solution to (43) is the sum of the solutions obtained by replacing

the excitation vector by (59a) and (59b) successively. Hence, we write
~— M — r~ b

f3t f3t6 f3t¢
n n n

73¢ 3306 1360
n _ n n

Pt - 33t8 + J3td (60)
n n n

23¢ 23646 23604

A \Y v

LnJ L—-n_A Ln J
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where the column vectors on

et
Z

St
n
vt
n

[t is evident

idee

(v

i 4}

{130
V +
-n

Y'ltt
n

Y?@t
n

Z?tt
n

23¢t
n

right-hand side of (60) satisfy

. — b
Ylt¢1 T?tu
n n
Y3¢¢ f3¢u
n n
23t¢ G3tu
n n
Z3¢¢ V3¢u
n — — n —

i N
v13tu
n

Vi3¢u
n , u=6,0 (61)
>i3tu

I
n

?13¢u

from (59) that

iijtn

-n

ii3¢0
-n

n

] = [Gi3t0 _§i3¢6 _ii3te ii3¢9]
n n n n

(62a)

YN TV e s
VL}t. V13¢g 113t¢ [13¢¢]
-n -n -n -n

_ il gides i3t 31304,
n n n

|
n (62b)

If n is replaced by -n in (61), and if (49), (57), and (62) are substituted
for the -n submatrices and excitation vectors, then comparison of the re-

sulting matrix equation with (61) yields

N Y AT T . 1A0 - - - <350

[[3t< I),‘ v)t Vj“t] - [IBtO _13¢9 _V3te V3 O] (63a)
-n -Nn -n -n n n n n
. . . BRI . <380 ~3t¢ L3

[I3t\b 13@@ V}(’.J‘ v3\,\, ] = [_1312@ I3¢t. V3t¢> _\,3u \:)] (63b)
-n -Nn -n -n n n n n

The solution to (43) is now given bv (60) where the column vectors for non-
negative values of n on the right-hand side of (60) are obtained by solving

(61) and the column vectors for negative values of n are given by (63).

The result stated in the previous sentence concerning the solution
to (43) will eventuallv be applied to the solution to (31). The solution

in to (31) is written as
~ ) [N
X =X +X (64)
n n n
0

; o0 :
where, for non-negative values of n, \n and \n are obtained by solving

B!

41 [
TX =8B (65a)
nn n

ph _ 2b
T X =8B (65b)
n i n
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where
=0 -i146 ~il-6 -1i0 ~i0
B = [vn v v T 1 (66a)
~¢ _ ~iltd ~il-¢ ~id ~i¢
Bn [Vn Vn Vn In ] (66b)
where
51146 ] "711+ , Vilﬂ
n n -n
Vrill—e . Vrill— + i;il-
-5 n (67a)
>if vl . 61
n n -n
L-~I->1(3 fi T fi _J
n _ n -n
- - . .
(3il+¢ Gll+ . G11+T
n n -n
V:l"¢ 1 V;l— 7 Vfl-
=3 n (67b)
i wos
n n -n
rig +i , =i
LIn _ LIn ) I-n _

The elements of the column vectors on the right-hand sides of (67) are

+
r* i

by W ., in order to obtain (47), the testing function wP

i -

, p=1,2,3, in (35) was replaced

; in (39) can be

-+
replaced by E:i" On the right-hand sides of (67), the upper sign applies

given by (39). In the same way that Ez

to elements for which the testing function in (39) is t type and the lower
sign applies when the testing function is ¢ type.

We wish to express the currents (40)-(42) in terms of the elements
pee >
of Xa and X; for non-negative values of n. With this objective in mind

and taking a cue from (64), we separate (32) into
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. - o . . 1
-yt it-f i v (68a)
n n n n n
SO S = ® i (68b)
n n n n n
In view of (68), the currents (40)-(42) become #
f’fi . (£+f; N i‘;) N QM ' f)) (69)
R AT AT LD a P L (70)
M= (71)

where the currents with the superscript 7 on the right-hand sides of (69)-
s

(71) are due to the set of all the X;'s for all values of n, Similarly,

the currents with the superscript o are due to the ii's. More explicitly,

(3™ + 3%, u being either 9 or 4, is given by (40) with Ii

1+u
nj

+
i

and Iu., respectively. Here, IITU and Iu. are the jth
nj nj nj

and I , re-
nj

placed by 1I

elements of fi+u and i:, respectively. Likewise, (gf” + g#) is given by

l-u

1-u and Iu. of 1
nj n

1- .
(41) with Inj and Inj replaced by the jth elements Inj

and fi. Finally, g& is given by (42) with an replaced by the jth element

Vu. of VY.
nj n

In view of (63),

ST U AT St AN LR L (72a)
-n n n n n

W 1+ l-d x4 50

x_.n [* In + In + Iﬂ Vn] (72b)

where the upper sign applies to the coefficients of the t type expansion
functions in (40)-(42) and the lower sign applies to the coefficients of
the ¢ type expansion functions in (40)-(42). Thanks to (72) and (10), the
t' and ¢ components of the currents on the right-hand sides of (69)-(71)

become
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(73a)

(73b)

(74a)

(74b)

(75a)

(75b)

(76a)

(76b)

(77a)

(77b)

(78a)

(78b)
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(82a)

(82b)

(83a)

(83b)

(84a)

(84b)
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where
e = (85)

In (73)-(84), k+ is the propagation constant in the medium characterized by
(n+, ﬁ+),At present, placement of the factor k+ in (73)-(78) and the factor
l/k+ in (79)-(84) can only be viewed as a matter of choice. The j that

appears in the factor 2j which alternates with £ in (79)-(84) is v-1. The

rest of the j's in (79)-(84) are summation indices.

Because of the subsectional nature of the triangle functions, only one
of them, namely T;—l(t+)’ contributes to (79a) when t+ = E; where j-1 is one
possible value of.any of the summation indices in (79a). Similar results
can be stated for (80a) and (8la). The pulse function Pt(tt) is centered

+ + j

at t = tj where
) (86)

Because of the subsectional nature of the pulse functions, only one of
them contributes to (79b) when t+ = tf where j is one possible value of
any of the summation indices in (79b)? Similar results can be stated

for (80b) and (81b). Hence, the values of (79)-(81) at the peaks of the
triangle functions and at the centers of the pulse functions are given by

. I1+H
. _n'nl

-
k+p2

+
2,3,...M

+ +
M+, Mte2,. . ot (87a)

v
=t e
(S

]

e 1
, JHMt-M- . + +
“n oo, jHrt-M-1 mbtemer, M2, . N1

+
|
+
[
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n n,N +M -M-2 . +

¥+
k oyt
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1,2,...M

ML, Mhe2, . M eer (87b)

+
M++M, M +M+L, .. N -1

M4+1, M +2,...M +M (88a)

M HHL, MHMH2,...N -1

M +1, M 42,...M +M-1 (88b)

MM, M 4MHL,...N -2
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0 j= M++1
Z'VO
\ i .
re -+ - -Mt- + + +
MUUEy = o, Mol §= M 42, M+3,...M 4M-1 (89a)
n i -+
k p,
J
+
0 j = M4+M
V'\
.
L i~ - + + +
M) - -“-L'%?i’il jo= MHL, MH2, . MR (89b)
! 1 k o,
J
+1 —+ —+
The non-7ero Vﬂ]UUS()fJE stated at tl and tN+ in (87a) are due not
—+ —4
to peaks of triangle functions but to the fact that tl and tN+ lie on

the z axis. These non-zero values were established in the paragraph

which follows the one containing (12). The starting and finishing values
. - . th

of zero were included in (89a) to emphasize the fact that Mn goes to zero

at the edyes of the aperture.

The values of (82)~(84) at the peaks of the triangle functions and
at the centers of the pulse functions are not written here. Tt suffices

to say that these values are given by the right-hand sides of (87)-(89)

A
3

with the factors n and 2j interchanged and with the superscript O replaced

by .

In summaryv, the eclectric and magnetic currents are given by (69)-(71)

and (73)-(84) of which (79)-(81) specialize to (87)-(89). According to
JEND _h Bl

(68), the 1's and V's in (79)-(84) are elements of Xn and Xg. Now, Xn and

Xﬁ are obtained by solving (65) for non-negative values of n. The moment
matrices Tn in (65) are given by (33)-(36). However, (335) was reduced to
(47) and (36) was reduced to the combination of (50) and (56). The exci-

Ny [
tation vectors B and }i in (65) are given by (66), (67), and (39) or

+ .
Lo p=1,2,3, replaced by wr,,.
ML

rather (39) with W
ni
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V. __PLANE WAVE [NCIDENCE

In this section, the method of moments solution summarized in
the last paragraph of Section IV is specialized to the case in which
(§i+. ﬂi+) is an obliquely incident plane wave and Ei- = Hi- = 0. If
the excitation (E?+, ﬂi+) is rotated in 9 by an angle ¢0, then it is
evident from rotational symmetry that the response will rotate by the
same angle @O. Hence, we may, without loss of generality, assume that
the propagation vector of the incident plane wave lies in the xz plane.
Any plane wave can be written as the sum of a O-polarized plane wave and
a »-polarized plane wave. Thus, it suffices to solve the electromagnetic

problem first for a (-polarized incident plane wave and then for a -

polarized incident plane wave.

For the fi-polarized incident plane wave, we choose

(] » M ) = (E ’ H ) (9051)
where ik e r
a t ++ -t -
E =u,kne (90b)
: -jk -t
H'= - g_zk e ° (90c)
The :-polarized incident plane wave is defined by
i+ + 4 4y
ET, 1) = (", °) (91a)
where
; _ -jk *r
- + _+_ —
E7 = p%k e T (91b)
—y
-jk, T
el + e -
H™ = _utk e t (91¢)
In (90) and (Y1), r is the radius vector from the origin, and kt is the
propagation vector given by
k = - k+(u sin i + u_ cos A ) (92)
~t X t -2 t

t t . .
Also, u’ and u] are unit vectors given by
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t - I - < 1 e
u, =y cost -u sin % (93a)
t
1, = u 93b
B Yy (930

In (92) and (93), u , u , and u are unit vectors in the x,y, and z
x’ Ty ~z

directions, respectively. The "t" in (92) and (93) stands for transmitter.
Presumably, cach of the incident waves (90) and (91) is produced by a
distant transmitter. According to (92), the transmitter bearing is given
by (,2) = (“t, 0) where @ is the angle that the radius vector from the

. . oo . . t t
origin makes with the positive z axis. When (9,9) = (dt, 0), u, and u,

coincide with the unit vectors in the  and ¢ directions, respectively.

The excitation vectors B and H; of (66) are now obtained for the

e v e . 5 . p+ _ . r+ .
polarized wave (90). Replacement of wni’ P 1,2,3, by Eni' in (39)

7, 4+ . N
and substitution of (90) and (0,0) for (E}+, ﬂl ) and (E1 . ﬂl ) in
(39) yield
il+ _ _ r+ j; ex
Vni = wni,, T E7> (94a)
n
il-
Vni =0 (94b)
i _ Tt 1 .9,
Vni - wni' o+ B> (94¢)
n
i _ . rt 0.
[ni = ~wni, , H (94d)

The values of r and i' in (94a) depend on Ei:, the values of r and i' in

(94c) depend on wi:, and the values of r and i' in (94d) depend on Eﬁ:.

; 4o+
[t is evident from (90c) and (91b) that H1 = - E'/H so that (94) becomes
il+ _ o+ 1 .6
ni wni' >+ E> (95a)
n
Vi%- -0 (95b)
ni
i _ r+ _l_'ﬂ
vni - <wni' b+ E> (95¢)
n
i _/‘r-l- 1 ¢
ni = " Vapr oo ¥ E™> (95d)
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Now, (95) reduces to

il+ rd

an = Vni' (96a)
vii' -0 (96b)
Vii = VZ?’ (96c)
Iii = - sz' (96d)

where the V's on the right-hand sides of (96) are given by [12, Eqs. (113),
(114), (116), and (117)] with i replaced by i', k replaced by k+, and the
quantities in the integrands made appropriate to the generating curve of
(S++A). The reader should not be misled into believing that the right-
hand sides of (96a) and (96¢c) are equal to each other. Because r and i'
originated in (94), their values in (96c) are not necessarily the same as

those in (96a).

With regard to the right-hand sides of (96), it is evident from

{12] that Vt?. and V¢¢, are even in n and that V¢e, and Vt?, are odd in
ni ni ni ni

n. Hence, substitution of (96) into (67) with due regard to (66) gives

<0 il+ N

B = [V o v, Il (97a)
50 - -

B =0 (97b)

Of course, the elements of the row vectors on the right-hand side of

(97a) are given by (96).
5o

The excitation vectors ﬁi and n of (66) are now obtained for the
¢-polarized wave (91). Replacement of EEI, p=1,2,3, by EZI, in (39),

substitution of (91) and (0, 0) for (§}+, §i+) and (gi', ﬂi_) in (39),

and use of the relationship _¢ = E?/n+ yield

il+ r+ 1 ¢

Vni <Wni,, n+ E™> (98a)
i1-

Vni =0 (98b)
fo_ e+ 1 b

Vag T Yoo ot B> (98c)
i r+ 1 .0

Ini <Wn1,, - E™> (98d)

n
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Now, (98) reduces to

yiit o re (99a)
ni ni

vil= oo (99b)
ni

i - yrd

Vni Vni' (99¢)
i _ oro

Ini = vni' (99d)

where the V's on the right-hand sides of (99) are given by [12, Egs. (113),

+
(114), (116), and (117)} with i replaced by i' and k replaced by k . Since
1
Vtﬂ, and V¢?, are even in n and V¢Q, and Vt?, are odd in n, substitution
ni ni ni ni

of (99) into (67) with due regard to (66) gives

- )

i s o (100a)
n

o _ il i

BY = [V 0 v I] (100b)

where the elements of the row vectors on the right-hand side of (100b)
are given by (99). The superscripts 8 and ¢ that were first introduced
in (64) and (65) had no mnemonic meaning then, but seem to denote the 9

and ¢ polarized incident plane waves now in (97) and (100).

To avoid confusion between the right-hand sides of (97a) and (100b)

and to achieve harmonv with (66), we replace (97a) by

A Ll T
R [V11+ 0 vl( 118] (101)
n n n n

and (100b) bv
) 4 4 1S ~ih
g o= ittt o gy iy (102)
n n n n

According to (96), the ith elements of the row vectors in (101) are

given by

{14 A + +
A Rt SR (103a)
ni ni -ni —ni

i : + 2+

U U AN T (103b)
ni ni ni —Ti

X & + 3+
S R (103¢)
ni ni -ni —ni
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According to (99), the ith elements of the row vectors in (102) are

given by
ylire _yro gttt (104a)
nil nl TNl —Tnl
vie ooyttt st (104b)
ni 1'11 -l il
TR ST LA PR T e (104¢)
ni niL -—Mn1t -1nl

The V's on the right-hand sides of (103) and (104) are given by [12, Egs.
(113), (114), (116), and (117)] modified as indicated below (96). The
auxiliary equations involving the W's in (103) and (104) determine r and

i'. For instance, the values of r and i' in (103a) are such that

LR e

It is now evident that the electric and magnetic currents due to the
f-polarized incident plane wave (90) are given by (73)-(75) and (79)-(81)
where the I's and V's in (79)-(81) are the elements (68a) of i: obtained by
solving (65a) for non-negative values of n with E: given by (101). Similarly,
the currents due to the p-polarized wave (91) are given by (76)-(78) and
(82)-(84) where the I's and V's in (82)-(84) are the elements (68b) of X¢
obtained by solving (65b) with B'j given by (102). Because the testing
functions w it and normalized flelds Ee/n and E¢/n all have the dimension
of (l/d1stance), the elements of the excitation vectors Bg of (101) and Bﬁ
of (102) are dimensionless. Since the elements of the moment matrix Tn are

©

dimensionless, the elements of ig and in obtained by solving (65) are also
dimensionless. As a result, the Fourier coefficients (79)~(84) of the cur-
rents are dimensionless. This is not surprising because, due to the facts
that an electric current has the same dimension as its magnetic field and
that a magnetic current has the same dimension as its electric field, the
electric currents (73)-(74) and (76)~(77) must have the same dimension as
(90c) and (91c) and the magnetic currents (75) and (78) must have the same

dimension as (90b) and (91b).
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VI. NUMERICAL RESULTS

A computer program was written to calculate the Fourier coef-
ficients (87)-(89) of the electric and magnetic currents due to the
fi-polarized wave (90), which is generally obliquely incident. This
program will be described and listed along with sample input and output
Jata in a forthcoming report. The t-polarized wave (91) was avoided for
fear of making the program unwieldy. According to the exposition in
Sections 1V and V, the Fourier coefficients of the currents due to the
d-polarized wave can easily be obtained by making two minor changes in
the computational procedure for the A-polarized wave. These changes are
replacement of (101) by (102) and interchange of the factors En and 2j
in (79)~(81) and (87)-(89).

In this section, the magnitudes of the Fourier coefficients
(87)-(89) of the electric and magnetic currents due to an axially inci-
dent plane wave traveling in the minus z direction are plotted for four
different objects of revolution. Specifically, the incident wave is
given by (90) with Ot = 0. At et = (0, the excitation vector (10l1), being
obtained from [12, Egqs. (113), (114), (116), and (117)], is zero for n # *1.
Hence, the only non-zero Fourier coefficients in (87)-(89) are those for
which n=1. These Fourier coefficients were calculated by using the com-
puter program introduced in the previous paragraph. It is evident from
(73)-(75) and (90) that expressions (87) and (88) are ratios of the elec-
tric currents to the incident magnetic field and that expressions (89)

are ratios of the magnetic currents to the incident electric field.

In Figs. 7-9, the magnitudes of the Fourier coefficients (87)-(89)
of the currents on the object of Fig. 6 are plotted by means of symbols.

The key for the symbols is given by

O ‘JE‘O(E;)l on conducting surfaces (105a)
0, +
O le (tj)\ on conducting surfaces (105b)
0 -
A IJ;+)(t;)| in the aperture (105¢)
+0, +
+ IJT O(tj)l in the aperture (105d)




Fig. 6. Perfectly conducting arrow with thick washer dielectric region.
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x ]MiO(E;)‘ in the aperture (105e)

O |M?6(t;)] in the aperture (105f)

+ . .
In (105a) and (105b), the plus sign applies on S and the minus sign
- + - PR .
applies on S . The surfaces S and S merge on the infinitely thin con-
ducting flange from C to H in Fig. 6. There, (105a) and (105b) are

replaced by

t+h -+

!Jl <cj) - Jf'e(E;)\ on the thin flange (106a)

-0

IJT+Q(E§) - 3577ty on the thin flange (106b)

o -+ - .
where -« is such that both t:i and ty are located at the same point on the

flange and m is such that both t; and t; are located at the same point on the
flange. The expressions whose magnitudes are being taken in (106) are the
Fourier coefficients of the electric current induced on the flange. In
general, the electric current induced on an infinitely thin perfectly con-
ducting surface is the sum of the exterior and interior currents. However,
because -{_ is used in Fig. 3, the electric current induced on the flange
in Fig. 6 is i+—i—. Thus, the difference rather than the sum of coef-
ficients is required in (106). All of expressions (105) and (106) are
plotted in each of Figs. 8 and 9. However, only the expressions on the
conducting surfaces, namely (105a), (105b), (106a), and (106b) are
plotted in Fig. 7. Actually, the exrressions plotted in Fig. 7 are not
(105a), (105b), (1l06a), and (106b) themselves but expressions comparable
to them.

For simplicity, the vertical axes in Figs. 7-9 are labeled {Jll.
The horizontal axes are labeled t rather than t:+ or t . Here, t represents
arc length between the points A,B,C,... designated in Fig. 6. The t com-
ponents of (the Fourier coefficients of) the currents, namely (105a), (105c¢),
(105e), and (l06a), are plotted at the tick marks in Fig. 6. These tick
marks represent the data points (11). The % components of the currents,
namely (105b), (105d), (105f), and (106b), are plotted at points midwa,
between the tick marks in Fig. 6. 1In Figs. 7-9, the symbols used to

P
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plot (105) and (106) are connected by straight line segments to improve
readability. To avoid congestion, the aperture region from H to F in
Fig. 6 is depicted twice in each of Figs. 8 and 9, once for plotting the
electric currents (105c) and (105d) and once for plotting the magnetic
currents (105e) and (105f). The following argument reveals that the t
axes in Figs. 7-9 are not always drawn to scale. Not all data points

in Fig. 6 are equally spaced. For instance, the data points from F to

G are not quite as dense as those from A to B. More obviously, the

data points in the aperture are twice as dense as those from A to B.
However, all data points are equally spaced along the t axes in Figs. 7-9.
Incidentally, the proper density of data points, or rather triangle

functions, in the aperture is discussed in [8].

The currents in Fig. 7 were obtained by means of the E-field solu-
tion, the currents in Figs. 8 and 9 by means of the aperture formulation,
and, if the reader will please glimpse forward, the currents in Fig. 15 by

means of the H-field solution. The E-field solution is that of [12] with

n = 2
t
n¢ = 20 (107)
n. = 2
where nt, n¢, and nT appear in the Gaussian quadrature formulas [12,
Eqs. (62), (64), and (132)], respectively. The H-field solution is that
of [14] with the values of n_, n,, and X therein given by (107). Speci-

t ¢ T

fically, n, 0y, and n, appear in [14, Eqs. (35), (36), and (79)]. The

¢

roles played by nt,n¢, and n.

in [12]. The aperture formulation refers to the solution

in [14] are similar to the roles played by

n, n,, and n

t b T
(87)-(89) developed in the present report. In view of (68a), the I's and
V's in (87)-(89) are given by the solution i? to (65a). In Section 1V,

the elements of the moment matrix T1 were expressed in terms of the ele-

ments of matrices similar to the moment matrices used in [12] and [14].

In Section V, the elements of ﬁg

elements of the plane wave excitation vectors used in [12]. The currents

in (65a) were expressed in terms of the




47

attributed to the aperture formulation were obtained by calculating

T, and gﬁ with nt, n

1 1 , and n, given by (107).

b

The F-field solution for the electric current induced on the
conducting surfaces of the object in Fig. 6 was constructed by using
two generating curves. The first one is ABCDEFG and the second one
extends from the tick mark directly below C to the point H. Since the
computer program in [12] is designed to handle only one generating curve,
the two (short) curves were connected to form one long curve, and then all
matrix elements associated with the line connecting the two short curves
were deleted. The matrix elements associated with the first pulse func-
tion on the second short curve were also deleted because that pulse func-
tion is a duplicate of one of the pulse functions on the first short curve.
With this arrangement, two independent triangle functions are centered at
C. Because each of these triangle functions satisfies Kirchhoff's current
law at C, the resulting E-field solution for the t component of the induced
electric current satisfies Kirchhoff's current law at C. The t component
of the induced electric current obtained by means of the aperture formu-
lation also satisfies Kirchhoff's turrent law at C. However, satisfaction
of Kirchhoff's current law by the t component of the induced electric
current at C is masked in Figs. 7-9 because magnitudes of currents rather
than real and imaginary parts of currents are plotted there.

The t component of the induced electric current is zero at H in
Fig. 7 because no triangle function is centered there. The t component
(106a) of the induced electric current is zero at H in Figs. 8 and 9 be-
cause the two J's in (106a) are equal to each other at H. These two J's
have to be equal to each other at H because they are both equal to the

aperture current there.

It is obvious that the E-field solution for the t component of
the induced electric current has to be continuous at F in Fig. 6. The
following reasoning shows that the t component of the induced electric
current obtained by using the aperture formulation is also continuous at F.
Because the t direction is the same as the t+ direction on the G side of F,

the t conponent of the induced electric current is J§+e(t+) there. Now,
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t and t are oppositely directed on the E side of F and there is a
compensating minus sign on 4_ in Fig. 3 so that the t component of the
induced electric current is Ji-o(t~) on the E side of F. However,
J;+0(t+) = J:_O(t—) at F because they are both equal to the aperture
current there. Hence, the t component of the induced electric current

obtained by using the aperture formulation is continuous at F.

The notation previously developed with specific reference to
Figs. 6-9 and 15 applies not only to these figures but also to Figs.
10-14 and 16-22. The object in Fig. 10 differs from the exemplary
object in Fig. 1 in that neither the exterior surface S+ nor the in-
terior surface S has a part above the aperture in Fig. 10. Nevertheless,
the computer program mentioned in the first paragraph of this section is
still applicable. Figure 11 shows currents on the spherical shell and
associated aperture region of Fig. 10 when Er = 1. The currents plotted
from A to B in Fig. 11l are the electric currents (106) induced on the

conducting shell.

The following reasoning shows that the E-field solution for the
electric current induced on the conducting shell in Fig. 10 is exactly
the same as the solution obtained by means of the aperture formulation
when YT 1. When partitioned, (31) consists of four matrix equations.

The first two of these equations are

» 2 - “ - +
211+ 1+ 4 Z1 + f _ Y13+ G _ 611 (108a)
n n n n n n n
- 3] - V= > - > »1]1 =
AL APl SRV iR G (108b)
r'n n r’n n n n n

Since the conducting surface in Fig. 10 is infinitelv thin, the surfaces
S+ and S~ exemplified in Fig. ! are identical. Furthermore, Fr = 1 and
nr = 1 so that the superscripts + and - attached to the Z's and Y's in
(108) lose their distinction. Hence, the difference between (108a) and

(108b) reduces to

+ »1 . [0 -- -
le [f1+ _ I1 ] = v11+ _ v11 (109)
n n n n n
»]+ ‘1_
Because the elements of [In - ln ] can be interpreted as the unknown
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£ = 2. (a) 10 intervals from A
tervals from A to B.

{b)

+
Aperture formulation, k' g = 2.5,

to B as in Fig. 10.

(b) 15 in-




51

coeffivients appearing in the expansion of the electric current induced
on the shell, (109) is precisely the matrix equation for the E-field solu-
tion. As a result, the E-field solution for the electric current in-
duced on the shell in Fig. 10 is exactly the same as the electric current
plotted from A to B in Fig. 1l1.

The magnetic currents (105e) and (105f) plotted from B to C in
Fig. 11 are comparable, respectively, to the functions [g(")| and |f(6)!
appearing in [15, Fig. 7]. The horizontal axes in [15, Fig. 7] and Fig. 11
run in opposite directions. The statement that ka = 2.75 in the caption
of [15, Fig. 71 is incorrect because ka is really 2.5 there. The currents
shown in Fig. 12a were calculated by using the data points designated in
Fig. 10. However, the currents shown in Fig. 12b were calculated with
the curve from A to B in Fig. 10 divided into not 10 but 15 equal intervals.
For Fig. 12b, the data points in the aperture were those designated in
Fig. 10.

The object in Fig. 13 was obtained by taking a perfectly conducting
solid sphere of radius a centered at the origin and replacing the conducting
material in the region |z| < a sin 15° by dielectric material characterized
by (EO, Ereo). The E-field and H-field solutions for the electric current
induced on the conducting surfaces of Fig. 13 are shown in Figs. 14 and 15,
respectively. These solutions were obtained by connecting the generating
curves ABC and DEF in Fig. 13 to obtain the single curve ABCDEF and then
deleting the matrix elements assoclated with the connecting line CD. Di-
visions by zero were avoided by arbitrarily setting k+p equal to 1 midway

between C and D. Here, p is the distance from the z axis.

The currents shown in Figs. 16 and 17 are on the object of Fig.
13 and were obtained from the aperture formulation. The object in Fig.
13 differs from the exemplary object in Fig. 1 in that the parts of s
above and below the aperture are disjoint in Fig. 13. However, the com-
puter program mentioned in the first paragraph of this section allows for
this. The induced electric currents from A to C and from D to F are
slightly different from each other in Figs. 14-16. The induced electric
current on the conducting surfaces of Fig. 13 obtained from the aperture

formulation when Cr = ] differs from the E~field solution for the induced
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Fip. 13. Two perfectly conducting porticns of a sphere separated by a
dielectric region.
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Fig. 14. E-field solution for electric current on conducting surfaces
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Fig. 15. H-field solution for electric current on conducting surfaces
of Fig. 13. k%a = 2.5, e = L.
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Fig. 16. Currents on object of Fig. 13. Aperture formulation,
kta = 2.5, & = 1.
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electric current because of the following reasoning. Of the triangle
functions used in the aperture formulation, those centered at B and E

are essential to the induced electric current. However, these triangle
functions extend into the aperture. On the other hand, all of the triangle
functions used in the E-field solution are confined to the conducting sur-
faces. In this respect, the aperture formulation differs from the E-field

solution.

Figures 19-22 show currents on the object of Fig. 18. On the object
of Fig. 18, EFB is the generating curve of the aperture. The object in
Fig. 18 differs from the exemplary object in Fig. 1 in that neither the ex-
ternal surface S+ nor the internal surface S has a part below the aperture
in Fig. 18. However, the computer program mentioned in the first paragraph
of this section allows for this. As seen from Figs. 19-21, the E-field
solution, the H-field solution, and the aperture formulation each give
slightly different results for the electric current induced on ABCD in
Fig. 18. The E-field solution and the aperture formulation give different
results for this current because in the aperture formulation the conductor

is coupled to the aperture at point B in Fig. 18.

A i W O~ ¢ K e
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Fig. 19. E-field solution for electric current on conducting

surface of Fig. 18. a = 0.1), Er = 1.
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Fig. 20, H-field solution for electric current on conducting surface

of Fig. 18. a = 0,1}, € = 1.
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